Sistema de verificación o de detección de errores:
Como se ha intentado explicar antes, los números de serie de los billetes euro primera serie, actúan de una forma concreta en módulo 9 o por lo menos eso creemos, ya que no hay ningún dato oficial al respecto. Al igual que cualquier otro dígito de control de otra plataforma, sea el DNI o una cuenta corriente, etc... se sabe que cumplen una serie de reglas y un razonamiento matemático, el checksum de los billetes euro actúa igual.
El checksum es un dígito calculado y para hacerlo, primero tenemos que saber como funciona el número de serie al completo, sabiendo que significa estar en módulo 9 y os voy a explicar dos opciones o métodos. Ambas son válidas para realizar todas las pruebas de verificación en la primera serie, pero ya os explicaré porque me gusta más la segunda.
Método 1: Se contempla que al dividir el número de serie al completo entre 9, da un cociente y el resto siempre y digo siempre, será 8. Cuando se dice el número de serie al completo, también nos referimos a la letra del código del país. En esta primera opción la letra se ha de sustituir por el orden que ocupa en el alfabeto internacional, en el que no aparece la Ñ, (A=1, B=2, C=3,…,V=22, W=23, X=24, Y=25, Z=26).
Vamos a coger un número de serie válido de la primer serie, por ejemplo: V16186269622, cambiamos la V por su orden alfabético que es el número 22. Queda el siguiente número: 2216186269622.
Ese número, si lo divimos entre 9, nos dará un cociente bastante largo y un resto 8. Podéis comprobarlo, os paso un enlace donde se pueden hacer este tipo de divisiones:
calculadora online. Esta propiedad pasa en todos los billetes euros de la primera serie, indistintamente del valor, del país o de cualquier otra variante.
Cualquier número de serie de un billete euro (primera serie), si hacéis lo explicado arriba, siempre dará 8 en el resto de la división entre 9.
Otra forma más sencilla y la que todos usamos en lugar de esa larga y costosa división es la suma dígito a dígito hasta reducirlo a un sólo número (tiene su explicación matemática, pero no lo explicaré. Si a alguien le interesa que lo diga y lo pondré). Mismo billete: V16186269622, donde V =22
2216186269622 --> 2+2+1+6+1+8+6+2+6+9+6+2+2 = 53 --> 5+3 = 8
Sabiendo esta propiedad que tienen los números de serie, calcular el checksum es sencillo, ya que acabaremos en una ecuación simple. Mismo billete pero ahora, nos imaginaremos que no sabemos el dígito de control: V1618626962x, donde V =22
221618626962x (la suma dígito a dígito ha de ser igual a 8)
2+2+1+6+1+8+6+2+6+9+6+2+x = 8
51 + x = 8
5+1+x = 8
6 + x = 8
x = 8 - 6
x = 2 ( el checksum de ese billete es 2 )
Bien, pues este método, además de servir para saber el checksum, sirve para conocer cualquier dígito del serial. Incluso podríamos saber la letra del país en su valor numérico... pero no tiene mucho sentido, ya que el resultado sería una cifra numérica y la tabla de sustitución del alfabeto internacional se basa en dos cifras numéricas.
Existe otra forma para detectar errores en los números de serie de los billetes euro (primera serie) y se trata de determinar si los 11 dígitos del número de serie ( no se cuenta la letra ), son válidos para la letra del país que consta en el billete. Para esto se usa lo que se conoce como
suma de verificación. Seguramente habéis visto alguna tabla parecida en formato diferente. En la que os muestro abajo, veréis que la suma de verificación es la última columna. Además he querido añadir el resto de columnas para hacer una tabla resumen única.
Fijaros que hay países que comparten suma de verificación...así que una misma numeración podría ser válida para, por ejemplo, Francia/Finlandia o España/Portugal...
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Resumen para el método 1:► Mostrar Spoiler
existen dos pruebas que se usan para determinar si un billete euro de la primera serie es correcto o no:
Prueba del resto 8: la letra se ha de sustituir por el orden que ocupa en el alfabeto internacional, en el que no aparece la Ñ, (A=1, B=2, C=3,…,V=22, W=23, X=24, Y=25, Z=26), se añade al resto del número; se suma dígito a dígito hasta obtener un único número. El resultado debe ser 8. Si no es ocho, ese número no es correcto, y por tanto el billete es falso.
Ejemplo: el billete con número de serie V16008279573, teniendo en cuenta que la V es la letra número 22 del abecedario, tendríamos 22+1+6+0+0+8+2+7+9+5+7+3=70; 7+0=7. Como 7≠8, el billete es falso.
Ejemplo: el billete con número de serie V02641612918, teniendo en cuenta que la V es la letra número 22 del abecedario, tendríamos 2+2+0+2+6+4+1+6+1+2+9+1+8=44; 4+4= 8, el billete es verdadero.
Prueba de suma de verificación o prueba de verificación del país: sumando los 11 dígitos NÚMERICOS del número de serie, y reduciendo a una única cifra, debemos obtener un número válido que concuerde con la tabla de arriba.
Ejemplo: el billete con número de serie V16008279573 no puede ser verdadero, porque 1+6+0+0+8+2+7+9+5+7+3=48; 4+8=12; 1+2=3; pero la suma de verificación para España (V) es 4, no 3.
Ejemplo: el billete con número de serie V02641612918 es verdadero, porque 0+2+6+4+1+6+1+2+9+1+8=40; 4+0= 4; la suma de verificación de España (V) es 4, así que es válido.